

Science Data Validation Plan— MODIS Atmospheres Group

- Summary of MODIS science objectives & data products
- MODIS atmosphere data products
- Team members & responsibilities
- Validation strategy, criteria, and plans

MODerate-resolution Imaging Spectroradiometer (MODIS)

- NASA, EOS AM & PM series
 - launches 1998, 2000, 2004, 2006
 - 705 km polar orbits, alternating descending & ascending (10:30 a.m. & 1:30 p.m.)
- Sensor Characteristics
 - 36 spectral bands ranging from 0.41 to 14.385 μm
 - cross-track scan mirror with 2,330 km swath width
 - Spatial resolutions:
 - » 250 m (bands 1 2)
 - » 500 m (bands 3 7)
 - » 1000 m (bands 8 36)
 - 2% reflectance calibration accuracy
 - onboard solar diffuser & SDSM

MODIS Atmosphere Products

- Cloud mask for distinguishing clear sky from clouds
- Cloud radiative and microphysical properties
 - Cloud top pressure, temperature, and effective emissivity
 - Cloud optical thickness, thermodynamic phase, and effective radius
- Aerosol optical properties
 - Optical thickness over the land and ocean
 - Size distribution (parameters) over the ocean
- Atmospheric profiles of moisture and temperature
- Column water vapor amount

Atmosphere Team Members

- Michael King (Si-Chee Tsay)
 - Cloud optical thickness and effective radius
 - Thermodynamic phase (post-launch)
- Yoram Kaufman
 - Aerosol properties over the land
- Didier Tanré
 - Aerosol properties over the ocean
- Paul Menzel (Steve Ackerman)
 - Cloud mask
 - Cloud top properties
 - Temperature and moisture profiles
- Bo-Cai Gao
 - Column water vapor & cirrus detection

Validation Strategy

- Field experiments for pre-launch and post-launch validation
 - Research program
 - MODIS-specific validation campaigns
- Coordination with ground-based networks to optimize resources
 - Continuous basis at specific locations around the globe
- Wide variety of atmospheric conditions
 - Arctic stratus in the summertime arctic
 - Multi-layer cloud systems in the polar night
 - Aerosol properties over the ocean and several land surface covers
 - Column water vapor under both humid and dry conditions

Field Campaigns

• Research Program

Mission	Dates	Responsible Team Members	Primary Purpose
SUCCESS	April-May 96	Tsay, Ackerman	cirrus cloud properties
TARFOX MOBY	July 96 August 97	Tanré, Kaufman Menzel, Ackerman	aerosol over the ocean cirrus clouds and
		,	atmospheric correction over the ocean
SCAR-C	September 97	Kaufman, Remer, Menzel, Prins	fire detection and properties
FIRE III	April-June 98 August 98	King, Tsay	arctic stratus clouds over sea ice
LBA	September 99	Gao, Menzel, King, Tsay	tropical clouds and biomass burning

Field Campaigns

• MODIS-specific validation campaigns

Mission	Dates	Responsible Team	Primary Purpose
		Members	
ARM	Sept 98	Menzel, Ackerman	periodic flights over
			Southern Great Plains
California	July 99	King, Platnick,	marine stratocumulus
	Dec 99	Tsay	and valley fog
Mid-Atlantic	Aug 99	Kaufman, Tanré,	water vapor, aerosol
		Remer	optical thickness &
			size distribution
Gulf of Mexico	Jan 00	Menzel, Ackerman	clear sky and cirrus
			clouds, plus sediment
			outflow from estuaries
			biomass burning
California & NW	Sept 00	Kaufman, Remer,	fire detection and
		Prins, Tanré	smoke aerosols

Primary Sensors

- ER-2 Aircraft
 - MODIS Airborne Simulator (King et al. 1996)
 - High-spectral resolution Interferometer Sounder (Smith et al. 1995)
 - Cloud Lidar System (Spinhirne et al. 1989)
 - AirMISR (currently under development)
- University of Washington CV-580
 - Cloud Absorption Radiometer (King et al. 1986)
 - Aerosol and cloud microphysics probes
 - » CN and CCN spectrometer
 - » aerosol and cloud drop size distribution
 - » liquid water content and effective radius probes
 - » ice particle counter
 - Nd:YAG monostatic lidar system

Ground-based Networks

• Selected ground-based networks

Measureme	Location	Responsible Team	Primary Purpose
		Members	
AERONET	US, Japan,	Holben, Kaufman,	aerosol optical
	South America,	Tanré	thickness & columnar
	Africa, Europe		size distribution
ARM	Oklahoma,	Menzel, Tsay	cloud base height, sky
	Alaska, WTP	Remer	radiance, temperature
			& moisture
ECLIPS	selected sites	Menzel, Ackerman	cloud base height
	and times-		statistics
	worldwide		
AEROCE	multiple island	Prospero, Kaufman,	aerosol hydroscopicity,
	locations-	Tanré	size, scattering &
	worldwide		absorption coefficients

Validation Criteria

Overall approach

- Collocation with higher resolution aircraft data
- Ground-based and in situ observations
- Intercomparison with other AM-1 platform instruments
 - » MISR and MODIS for aerosol optical thickness
 - » ASTER and MODIS for cloud mask in polar regions
- Focused and short field deployments
 - » winter deployment over the Great Lakes, Hudson Bay, sea ice, and lake ice (based in Madison, WI)
 - » summer deployment over the ocean, mountains, and desert (based in Mountain View or Dryden)
 - » post-launch ER-2 deployment over the SGP ARM/CART site in Oklahoma, together with ground-based sondes, AERI, microwave moisture measurements, lidar, radar, and whole sky camera images

Sampling Requirements

- Availability of MODIS-derived data products globally from AM-1 and PM-1 will enable scientists, worldwide, to provide feedback and validation information that will enable improvements in retrievals
 - Not possible for small MODIS science team to assess products under all conditions worldwide
 - Nighttime retrievals will be especially difficult for aerosol and some cloud properties
- Seasonal statistics and trends will be monitored to assess unusual changes in selected geographic and climatologically significant regions

Pre-launch Activities

• Data sets already in hand for algorithm development

Campaign	Sensors	Responsible Team	Primary Purpose
		Members	
ASTEX	MAS, CLS, CAR,	King, Tsay, Wang	marine stratocumulus
	microphysics		
SCAR-A	MAS, CLS, CAR,	Kaufman, Remer,	aerosol properties,
	AVIRIS, AERONET	King, Menzel	surface BRDF
MAST	MAS, CLS, CAR,	Platnick, King	marine stratocumulus
SCAR-C	AVIRIS, MAS,	Kaufman, Remer,	smoke, clouds, &
	AERONET	Prins	radiation
ARMCAS	MAS, AVIRIS,	Tsay, King,	arctic stratus clouds,
	CLS	Platnick, Ackerman	BRDF of tundra &
			sea ice
SCAR-B	MAS, AVIRIS,	Kaufman, Remer,	biomass burning,
	CAR, AERONET,	King, Tsay, Prins,	surface BRDF
	microphysics	Menzel	

Pre-launch Activities

• Data sets to be acquired between now and launch

Campaign	Sensors	Responsible Team	Primary Purpose
		Members	
SUCCESS	MAS, CLS, HIS,	Ackerman, Tsay	mid-latitude cirrus,
	AERI		cloud over continents
TARFOX	MAS, LASE, CAR,	Tanré, Kaufman,	sulfate aerosols over
	AVIRIS, AERONET	Remer, Tsay	the ocean
MOBY	MAS, AVIRIS,	Menzel, Ackerman	cirrus clouds & atmos.
	AERONET	Prins	correction over ocean
SCAR-C	MAS, AVIRIS,	Kaufman, Remer	smoke-cloud
	AERONET		interactions
FIRE III	MAS, CLS, CAR	King, Tsay,	arctic stratus clouds
	AERONET,	Ackerman	over sea ice, surface

Other Pre-launch Activities

- Operational surface networks
 - Selected data from the SGP ARM site is archived daily at the University of Wisconsin
 - Ground-based sunphotometer/sky radiometer data from AERONET are archived every 30 minutes at Goddard Space Flight Center
 - » Spectral aerosol optical thickness and size distribution derived
 - » Uniform data reduction software used for this worldwide data collection network
- Satellite data
 - Pre-launch satellite data include AVHRR, HIRS, and GOES data for field experiment support and validation
 - » Data are archived at the University of Wisconsin
 - » Selected data sets for selected experiments archived at various DAACs (LaRC, GSFC) and the Naval Postgraduate School (MAST)

Post-launch Activities

• Validation campaigns Atmosphere Group plans on participating in

Campaign	Sensors	Responsible Team	Primary Purpose
		Members	·
FIRE III	MAS, CLS, AirMISR,	King, Tsay,	arctic stratus clouds
	HIS, microphysics	Menzel, Ackerman	over sea ice
LBA	MAS, CLS, AirMISR	King, Tsay, Menzel,	tropical cirrus clouds
		Platnick, Ackerman,	& biomass burning

Note: Status (and timing) of INDOEX not yet decided

Intercomparisons

Cloud Mask

The MODIS and ASTER cloud mask will be compared in polar regions

Cloud Properties

- Intercomparisons of thermodynamic phase derived from atlaunch thermal algorithm and post-launch solar algorithm will be made during the day in a wide variety of conditions
- Comparison between MODIS, CERES (SSF) and MISR cloud products (AM-1) should yield evidence of inconsistency in assumptions
 - » GLI will be an additional cloud mask and cloud property data set after its launch on ADEOS-2 in 1999
- Cloud top altitude derived from MISR stereo imagery will be compared to MODIS-derived cloud top altitude (pressure) which is based on CO₂ slicing, a very different technique applicable both during the day and night

Intercomparisons (continued)

Aerosol Properties

 Intercomparisons of aerosol optical thickness derived from MODIS and MISR will be intercompared over the surface AERONET sunphotometer/sky radiometer sites worldwide (approximately 60 different locations)

• Precipitable Water

 Precipitable water will also be compared between MODIS and the ground-based Cimel sunphotometers in the AERONET

EOSDIS

- Intercomparisons between various field experiments, surface sites, and international partner feedback will be coordinated to test refinements of individual algorithms in the Team Member's Computing Facility
- Where multiple algorithms are affected, further refinement will take place with periodic updates to the Team Leader Computing Facility, where a whole month of data will be processed using the revised algorithm
- Routine data products will be available to the global scientific community through EOSDIS
- Results from field experiments and validation exercises will also be made available to the international scientific community through EOSDIS, as are MAS data currently